Abstract
The A-tensor parameterizes the "hyperfine" interaction of an "effective" electronic spin with the magnetic field due to the nuclear spin as monitored in an electron paramagnetic resonance (EPR) experiment. In this account, we describe an implementation for the calculation of the A-tensor in systems with translational invariance based on the Kohn-Sham form of density functional theory (KS DFT). The method is implemented in the periodic program BAND, where the Bloch states are expanded in the basis of numerical and Slater-type atomic orbitals (NAOs/STOs). This basis is well-suited for the accurate representation of the electron density near the nuclei, a prerequisite for the calculation of highly accurate hyperfine parameters. Our implementation does not rely on the frozen core approximation tacitly assumed in the pseudopotential schemes. The implementation is validated by performing calculations on the A-tensor for small atoms and molecules within the supercell approach as well as for paramagnetic defects in solids. In particular, we consider the A-tensor of "normal" and "anomalous" muonium defects in diamond and of the hydrogen cyanide anion radical HCN(-) in a KCl host crystal lattice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.