Abstract
Fiber optic taper (FOP) array coupled digital x-ray detector can be an ideal choice for large area high resolution x-ray imaging, but its data acquisition system is a challenge, for the reasons such as restrictions of hardware design due to the shape of the FOP array, long distance control requirement in x-ray environment, and arrangement of data transmission sequence among multiple CCD/CMOS image sensors. A FPGA and ARM based data acquisition system for 2×2 FOP array coupled x-ray detector was implemented in this paper. We have finished all the procedures involving the data acquisition system, including hardware and PCB design, FPGA design, ARM and PC software development, and so on. The data acquisition process operates in parallel during parameters setting, 4 CMOS image sensors (LUPA-4000) timing driving, and DDR2 SDRAM data buffering, while it works in series when sending data from each FPGA to ARM and from ARM to PC. Experimental results showed that the data acquisition system worked steadily, and whole images of a custom-built calibration plate were achieved by butting images of the four individual CMOS image sensors’ in visible light test environment. This work could be a valuable foundation for realization of all kinds of FOP array coupled digital x-ray detectors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Open Electrical & Electronic Engineering Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.