Abstract

AbstractThe influence of a transverse crack on the vibration of a rotating shaft has been at the focus of attention of many researchers. The knowledge of the dynamic behavior of cracked shaft has helped in predicting the presence of a crack in a rotor. Here, the changing stiffness of the cracked shaft is investigated based on a cohesive zone model. This model is developed for mode‐I plane strain and accounts for triaxiality of the stress state explicitly by using basic elastic‐plastic constitutive relations. Then, the proposed numerical solution is compared to the switching crack model, which is based on linear elastic fracture mechanics. The cohesive zone model is implemented in finite element techniques to predict and to analyse the dynamic behavior of cracked rotor system. Timoshenko beam theory is used to model the discrete shaft under the effect of gravity, unbalance force and gyroscopic effect. The analysis includes the cohesive function for describing the breathing crack and the reduction of the second moment of area of the element at the location of the crack. (© 2010 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.