Abstract

Real-time magnetoencephalography (rtMEG) is an emerging neurofeedback technology that could potentially benefit multiple areas of basic and clinical neuroscience. In the present study, we implemented voxel-based real-time coherence measurements in a rtMEG system in which we employed a beamformer to localize signal sources in the anatomical space prior to computing imaginary coherence. Our rtMEG experiment showed that a healthy subject could increase coherence between the parietal cortex and visual cortex when attending to a flickering visual stimulus. This finding suggests that our system is suitable for neurofeedback training and can be useful for practical brain-machine interface applications or neurofeedback rehabilitation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.