Abstract

AbstractCapabilities to directly assimilate radar data are implemented within the local ensemble transform Kalman filter (LETKF) and the gain‐form LETKF (LGETKF) algorithms of the Joint Effort for Data assimilation Integration (JEDI) system. The capabilities are evaluated for the analysis and forecast of a severe convection case of 20 May 2019 in the Southern Great Plains using the limited area model version of the FV3 dynamical core (FV3‐LAM) from a recent release for Short‐Range Weather Application (SRW App). The LETKF and LGETKF implementations are shown to produce analyses and short‐range forecasts comparable to those using the ensemble square‐root Kalman Filter (EnSRF) within the Gridpoint Statistical Interpolation (GSI) framework used by current NCEP operational models. In addition, LGETKF retaining only 60% variances for model‐space vertical localization performs similarly to LGETKF retaining 99% of variance and LETKF using observation error‐based vertical localization. JEDI LETKF shows better parallel scalability than LGETKF and GSI EnSRF.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.