Abstract

This work presents a real time testing approach of an Intelligent Multiobjective Nonlinear-Model Predictive Control Strategy (iMO-NMPC). The goal is the testing and analysis of the feasibility and reliability of some Soft Computing (SC) techniques running on a real time industrial controller. In this predictive control strategy, a Multiobjective Genetic Algorithm is used together with a Recurrent Artificial Neural Network in order to obtain the control action at each sampling time. The entire development process, from the numeric simulation of the control scheme to its implementation and testing on a PC-based industrial controller, is also presented in this paper. The computational time requirements are discussed as well. The obtained results show that the SC techniques can be considered also to tackle highly nonlinear and coupled complex control problems in real time, thus optimising and enhancing the response of the control loop. Therefore this work is a contribution to spread the SC techniques in on-line control applications, where currently they are relegated mainly to be used off-line, as is the case of optimal tuning of control strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.