Abstract

The construction of evaporative coolers in remote areas can increase the longevity of vegetables, improving food security and the local economy of small farmers in remote, impoverished communities without access to electricity. This work presents a 1:1 scale prototype of an 8 m3 (2.1 × 2.1 × 2.3 m) stabilized adobe evaporative cooler, with a design based on the appropriate technology framework, and it was built as a chamber using double adobe walls, filled with wet sand, to induce evaporative cooling. Furthermore, the paper presents the prototype’s performance evaluation. The tests were carried out in the dry and wet states, with different volumes of water. The results show good performance compared with other prototypes, although the optimum watering volume could not be determined because of the high climate variance (outside temperature and humidity) that prevented the repetition of the experiments in identical operating conditions. Stabilized adobe proved to be a good choice for use in the cooler, even when subject to moisture accumulation, indicating an estimated long lifetime for the cooler. The data obtained about the efficiency of evaporative cooling show that the cooler, as expected, has its best performance on the hottest and driest days, reducing the internal temperature (up to 13.24 °C) and managing to keep the internal humidity. The cost, efficiency, durability, and replicability make the proposed evaporative cooler a feasible solution for food preservation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call