Abstract

Global navigation satellite system (GNSS) plays a crucial role in many fields, such as aerospace and transportation. Integrity is the measure of trust used in GNSS positioning especially in safety-critical applications. Advanced receiver autonomous integrity monitoring (ARAIM), taking full advantage of multi-constellation GNSS, shows huge potential to provide vertical navigation in civil aviation en route navigation and terminal approaches. However, the multi-constellation ARAIM also greatly exposes computational complexity and potential performance hazards in fault modes determination and fault-tolerant positioning. From the perspective of integrity risk control, rather than the pursuit of better positioning accuracy blindly for safety-critical applications, the concept of constellation dynamic selection is proposed and implemented in ARAIM and the performance analysis is discussed in this paper. Only the best two constellations which have the best vertical geometry performance are involved in ARAIM calculation anytime anywhere. The proposed method shows superiority in both integrity availability and computational complexity in both simulations and actual GNSS signal experiments. While the computational complexity is less than 10% of that using four constellations, 100% availability under LPV-200 criteria can be achieved in worldwide coverage experiment. The proposed method also overcomes the shortcomings of ARAIM with two fixed constellations and shows good robustness under depleted scenarios. Furthermore, the statistics results from observation stations proved the applicability and generality of the proposed method under current developing GNSS constellations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.