Abstract
AbstractThis paper presents an implementation method of perturbation currents for vehicular proton exchange membrane fuel cell (PEMFC) online electrochemical impedance spectroscopy (EIS) measurements. The topology of the parallel dual‐boost DC/DC converter system for the EIS measurement is presented. The DCdc and DCac modules in the converter system implement the DC current and the sinusoidal EIS perturbation current independently. Simulation results show that the proposed perturbation current generation method can be implemented efficiently. In the frequency domain, the current of DCdc couples to the perturbation current of DCac, leading to a reduction in the accuracy of the current amplitude after superposition. The mechanism of current amplitude reduction after superposition is discussed. Feed‐forward compensation and fuzzy compensation optimization are proposed for the DCdc current control. Both compensation algorithms achieve excellent results. A comprehensive framework for evaluating the compensation effect is presented. The evaluation results show that feed‐forward compensation has a better advantage in solving the above problems due to its simplicity and less impact on hardware control. Experimental results show that with the optimization algorithm, the input perturbation current increases from 6% to 83% of the theoretical value.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.