Abstract

In this paper, a new BCE with multi-focusing microlens array (MLA) was proposed. The BCE consist of detachable micro-hole array (MHA), multi-focusing MLA and spherical substrate, thus allowing it to have a large FOV without crosstalk and stray light. The MHA was fabricated by the precision machining and the parameters of the microlens varied depend on the aperture of micro-hole, through which the implementation of the multi-focusing MLA was realized under the negative pressure. Without the pattern transfer and substrate reshaping, the whole fabrication method was capable of accomplishing within several minutes by using microinjection technology. Furthermore, the method is cost-effective and easy for operation, thus providing a feasible method for the mass production of the BCE. The corresponding image processing was used to realize the image stitching for the sub-image of each single microlens, which offering an integral image in large FOV. The image stitching was implemented through the overlap between the adjacent sub-images and the feature points between the adjacent sub-images were captured by the Harris point detection. By using the adaptive non-maximal suppression, numerous potential mismatching points were eliminated and the algorithm efficiency was proved effectively. Following this, the random sample consensus (RANSAC) was used for feature points matching, by which the relation of projection transformation of the image is obtained. The implementation of the accurate image matching was then realized after the smooth transition by weighted average method. Experimental results indicate that the image-stitching algorithm can be applied for the curved BCE in large field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.