Abstract

Ductile materials, such as metal alloys, can undergo substantial deformation before failure. Additionally, these materials are usually of polycrystalline composition and exhibit strongly anisotropic behavior at small length scales. Previously developed fast Fourier transform (FFT)-based models can model ductile fracture of isotropic materials or the elastic–plastic behavior of anisotropic polycrystalline materials; however, there remains a need to couple both capabilities. This work extends a large-strain FFT-based crystal plasticity model to simulate ductile fracture of polycrystalline materials. A triaxiality-based continuum damage mechanics (CDM) formulation is incorporated into a large-strain elasto-viscoplastic FFT (LS-EVPFFT) framework. The CDM formulation is augmented with an integral-based nonlocal regularization approach that correctly handles gas-phase material necessary to model unconstrained surfaces. To validate the damage-enabled LS-EVPFFT framework, mesoscale copper tensile coupons were machined using microwire electrical discharge machining and experimentally characterized using electron backscatter diffraction. In-situ optical digital image correlation was performed during uniaxial testing to provide a side-by-side comparison of the experimental and computational strain fields and stress–strain responses. The damage-enabled LS-EVPFFT framework can simulate the complete macroscopic stress–strain response of ductile polycrystals to failure. The model reproduces necking behavior that qualitatively agrees with experimental observations. By leveraging the relatively low computational cost of the damage-enabled LS-EVPFFT framework, the framework presented here allows the ductile fracture response of 3D polycrystalline materials to be tractably predicted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.