Abstract

An iterative process implementing an adaptive hp-version of the finite element method (FEM) previously proposed by the authors for the approximate solution of boundary value problems for the stationary reaction–diffusion equation is described. The method relies on piecewise polynomial basis functions and makes use of an adaptive strategy for constructing a sequence of finite-dimensional subspaces based on the computation of correction indicators. Singularly perturbed boundary value test problems with smooth and not very smooth solutions are used to analyze the efficiency of the method in the situation when an approximate solution has to be found with high accuracy. The convergence of the approximate solution to the exact one is investigated depending on the value of the small parameter multiplying the highest derivative, on the family of basis functions and the quadrature formulas used, and on the internal parameters of the method. The method is compared with an adaptive h-version of FEM that also relies on correction indicators and with its nonadaptive variant based on the bisection of grid intervals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call