Abstract

A novel optical sensor for the detection of ultrasonic motion has been recently developed. It allows to reach 25 μm displacement sensitivity with a large frequency range bandwidth 100 MHz. We will present a comparative study between various architectures of this ultrasonic detection system we have implemented. It uses InP:Fe or CdZnTe:V holographic crystals and operates with CW laser at 1.06 μm. Two configurations called the direct detection and the anisotropic diffraction configurations work with either plane or speckled waves. A third discussed configuration works with depolarized speckled waves. We measured their relative detection limits as a function of the applied electric field that governs photorefractive efficiency of the materials. Experimental results are well described by theory, using photorefractive models relevant to the used crystals

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call