Abstract
This article implements the thinning process algorithm, which has been generalized for estimators of compound periodic Poisson processes. The use of generalizations in the algorithm has been prepared with a linear trend in the periodic elements. This research aims to discuss estimators of the variance function. The method used in this research is the simulation method. Simulation results using a generalized algorithm thinning process show that in the case of a limited observation time interval, some estimators are good enough to approach the actual value. As the value of n increases, the simulated value of the estimator moves towards the predicted value. This is following the lemmas, theorems, and consequences that have been discussed. It was also found that several estimators were quite slow. This results in the movement of the bias, variance, and MSE values of the estimators being slow, even though they are moving towards 0. So that further modifications can be made to the model being studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.