Abstract
Heart disease is a prominent global health concern, necessitating early identification and patient grouping for effective management. This study employs the K-Means clustering algorithm with a medical dataset of 303 patients, encompassing various attributes. These include Age, Gender, Chest Pain Type, Blood Pressure, Serum Cholesterol Level, Fasting Blood Sugar, Resting Electrocardiographic Results, Maximum Heart Rate, Angina, ST Depression, and Slope of the ST Segment. The goal is to categorize patients into four clusters based on chest pain types, a crucial symptom indicating disease severity. The computation concludes after the sixth iteration, revealing Cluster 1 (27 patients), Cluster 2 (135 patients), Cluster 3 (15 patients), and Cluster 4 (126 patients). Collaborative analysis with medical experts highlights that Cluster 1, mainly comprising older males, exhibits high-risk indicators. While this grouping aids in personalized treatment strategy development, further clinical validation involving more experts and datasets is imperative for enhanced reliability.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.