Abstract

Despite that poly (lactic acid) (PLA) has satisfactory biodegradation in vivo, its application in biomedicine is restricted due to its unsatisfactory cytocompatibility. Silk fiber (SF) has outstanding biocompatibility and silk fibroin protein obtained from silk by degumming has good hydrophilicity. Therefore, combining the PLA and silk can improve hydrophilicity of PLA to apply as biomedical materials. In this study, different concentrations of sodium hypochlorite (NaClO) were used to separate the silk to obtain multiscale silk fibers (MSFs), which were implanted into the PLA electrospun fibrous membranes (EFMs). The morphology and structure of silk fibers separated by different concentrations of NaClO were studied by Zetasizer Nano ZS, UV spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy. Moreover, the biocompatibility of the surface-modified PLA composite membranes by MSFs was investigated by cell cultivation and proliferation. The results showed that the surface-modified PLA EFMs through MSF bundles obtained from NaClO split silk exhibited a certain improvement on PLA hydrophilicity and enhancement on cellular compatibility, which could have a broad prospect in the practical application of biomedical materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.