Abstract

Human neural stem cells offer the hope that a cell therapy treatment for Parkinson's disease (PD) could be made widely available. In this study, we describe two clonal human neural cell lines, derived from two different 10-week-old fetal mesencephalic tissues and immortalized with the c-mycER(TAM) transgene. Under the growth control of 4-hydroxytamoxifen, both cell lines display stable long-term growth in culture with a normal karyotype. In vitro, these nestin-positive cells are able to differentiate into tyrosine hydroxylase (TH)-positive neurons and are multipotential. Implantation of the undifferentiated cells into the 6-OHDA substantia nigral lesioned rat model displayed sustained improvements in a number of behavioral tests compared with noncell-implanted, vehicle-injected controls over the course of 6 months. Histological analysis of the brains showed survival of the implanted cells but no evidence of differentiation into TH-positive neurons. An average increase of approximately 26% in host TH immunoreactivity in the lesioned dorsal striatum was observed in the cell-treated groups compared to controls, with no difference in loss of TH cell bodies in the lesioned substantia nigra. Further analysis of the cell lines identified a number of expressed trophic factors, providing a plausible explanation for the effects observed in vivo. The exact mechanisms by which the implanted human neural cell lines provide behavioral improvements in the PD model are not completely understood; however, these findings provide evidence that cell therapy can be a potent treatment for PD acting through a mechanism independent of dopaminergic neuronal cell replacement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.