Abstract

ABSTRACTThe activation annealing of Si-implanted GaN is reported for temperatures from 1100 to 1400 °C. Although previous work has shown that Si-implanted GaN can be activated by a rapid thermal annealing at ∼1100 °C, it was also shown that significant damage remained in the crystal. Therefore, both AlN-encapsulated and uncapped Si-implanted GaN samples were annealed in a metal organic chemical vapor deposition system in a N2/NH3 ambient to further assess the annealing process. Electrical Hall characterization shows increases in carrier density and mobility for annealing up to 1300 °C before degrading at 1400 °C due to decomposition of the GaN epilayer. Rutherford backscattering spectra show that the high annealing temperatures reduce the implantation induced damage profile but do not completely restore the as-grown crystallinity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call