Abstract

An implantable miniaturized imaging device can be attractive in many clinical applications. They include automated, periodic, high-resolution monitoring of susceptible organs for early detection of an anomalous growth. In this paper, we propose an implantable ultrasonic imager capable of online high-resolution imaging of a region inside the body. A feasibility analysis is presented, with respect to design of such a system and its application to online monitoring of tumor growth in deep internal organs. We use ultrasound (US) imaging technology, as it is safe, low-cost, can be easily miniaturized, and amenable for long-term, point-of-care (POC) monitoring. The design space of the proposed system has been explored including form factor, transducer specifications and power/energy requirements. We have analyzed the effectiveness of the system in timely detection of anomalous growth in a case study through software simulations using a widely-accepted ultrasonic platform (Field II). Finally, through experimental studies using medical grade phantoms and an ultrasound scanner, we have evaluated the system with respect to its major imaging characteristics. It is observed that interstitial imaging under area/power constraints would achieve significantly better imaging quality in terms of contrast sensitivity and spatial resolution than existing techniques in deep, internal body parts, while maintaining the automated monitoring advantages.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.