Abstract
Stresses and strains are major factors influencing growth, remodeling and repair of musculoskeletal tissues. Therefore, knowledge of forces and deformation within bones and joints is critical to gain insight into the complex behavior of these tissues during development, aging, and response to injury and disease. Sensors have been used in vivo to measure strains in bone, intraarticular cartilage contact pressures, and forces in the spine, shoulder, hip, and knee. Implantable sensors have a high impact on several clinical applications, including fracture fixation, spine fixation, and joint arthroplasty. This review summarizes the developments in strain-measurement-based implantable sensor technology for musculoskeletal research.
Highlights
Biomechanics plays a major role in orthopedic injury, disease, and treatment
This review summarizes the developments in strain measurementbased implantable sensor technology for musculoskeletal research in general, with a special emphasis on the knee joint
Implantable sensors in the hip joint Forces acting on implanted femoral components were measured in vivo by Rydell as early as 1966 [12]
Summary
Biomechanics plays a major role in orthopedic injury, disease, and treatment. The form and function of the musculoskeletal system is primarily mechanical in nature, supporting and protecting the rest of the body, and facilitating movement and locomotion. Implantable sensors in the hip joint Forces acting on implanted femoral components were measured in vivo by Rydell as early as 1966 [12].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.