Abstract

As a severe stage of cancers, peritoneal carcinomatosis should be frequently monitored by means of ascites analysis. Nevertheless, the analysis process is traumatic and time-consuming in clinical practice. In this study, an implantable platinum nanotree microelectrode with a wireless, battery-free and flexible electrochemical patch was developed for in vivo and real-time peritoneal glucose detection to monitor peritoneal carcinomatosis. As the core of implantable microelectrode, platinum trees were synthesized by one-step electrodeposition method and highly sensitive to glucose detection. The platinum nanotree microelectrode was implantable in peritoneal cavity in minimally invasive way. A flexible circuit patch could execute electrochemical test and realize wireless power harvesting and data interaction with a near field communication (NFC)-enabled smartphone. The whole system could detect glucose dynamics in vivo in rat peritoneal cavity. Furthermore, the accuracy of this system was validated in ascites of patients. In this way, the system could offer hassle-free, rapid and minimally invasive opportunities toward peritoneal carcinomatosis monitoring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.