Abstract

Implantable microfabricated microelectrode arrays represent a versatile and powerful tool to record electrophysiological activity across multiple spatial locations in the brain. Spikes and field potentials, however, correspond to only a fraction of the physiological information available at the neural interface. In urethane-anesthetized rats, microfabricated microelectrode arrays were implanted acutely for simultaneous recording of striatal local field potentials, spikes, and electrically evoked dopamine overflow on the same spatiotemporal scale. During these multi-modal recordings we observed (1) that the amperometric method used to detect dopamine did not significantly influence electrophysiological activity, (2) that electrical stimulation in the medial forebrain bundle (MFB) region resulted in electrochemically transduced dopamine transients in the striatum that were spatially heterogeneous within at least 200μm, and (3) following MFB stimulation, dopamine levels and electrophysiological activity within the striatum exhibited similar temporal profiles. These neural probes are capable of incorporating customized microelectrode geometries and configurations, which may be useful for examining specific spatiotemporal relationships between electrical and chemical signaling in the brain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.