Abstract
The sustainable operation of implanted medical devices is essential for healthcare applications. However, limited battery capacity is a key challenge for most implantable medical electronics (IMEs). The human body abounds with mechanical and chemical energy, such as the heartbeat, breathing, blood circulation, and the oxidation-reduction of glucose. Harvesting energy from the human body is a possible approach for powering IMEs. Many new methods for developing in vivo energy harvesters (IVEHs) have been proposed for powering IMEs. In this context energy harvesters based on the piezoelectric effect, triboelectric effect, automatic wristwatch devices, biofuel cells, endocochlear potential, and light, with an emphasis on fabrication, energy output, power management, durability, animal experiments, evaluation criteria, and typical applications are discussed. Importantly, the IVEHs that are discussed, are actually implanted into living things. Future challenges and perspectives are also highlighted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.