Abstract

Implantable sensors normally require devices with excellent biocompatibility and flexibility as well as wireless communication. Silk fibroin (SF) is an ideal material for implantable electronic devices due to its natural biodegradability and biocompatibility. In this work, we prepared SF protein materials with different force/chemical properties through mesoscopic regulation, and realized full protein replacement from substrate to dielectric elastomer for implantable sensors, so as to achieve controlled complete degradation. In wireless tests simulating intracranial pressure, the SF-based all-protein sensor achieved a sensitivity up to 4.44 MHz/mmHg in the pressure range of 0–20 mmHg. In addition, the sensor is insensitive to temperature changes and tissue environments, and can work stably in simulated body fluids for a long time. This work provides a wireless passive, all-protein material solution for implantable pressure sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.