Abstract
This manuscript describes an aeroacoustic computational study on the impingement of a tractor-propeller slipstream on the leading edge of a pylon. Both the flow and acoustic fields are studied for two pylon leading edges: a solid and a flow-permeable one. The computational set-up replicates experiments performed at Delft University of Technology. Computational results are validated against measurements. It is found that the installation of the flow-permeable leading-edge insert generates a thicker boundary layer on the retreating blade side of the pylon. This is caused by an aerodynamic asymmetry induced by the helicoidal motion of the propeller wake, which promotes a flow motion through the cavity from the advancing to the retreating blade side of the pylon. The flow-permeable leading-edge insert mitigates the amplitude of the surface pressure fluctuations only on the pylon-retreating blade side towards the trailing edge, thus reducing structure-borne noise. Furthermore, it causes a reduction of the near-field noise only for receiver angles oriented in the upstream direction at the pylon-retreating blade side. In this range of receiver angles, it is found that the flow-permeable leading-edge insert reduces the amplitude of the tonal peaks for the third and fourth blade passage frequency, but strongly increases the broadband noise for frequencies higher that the seventh blade passage frequency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.