Abstract
An imperialist competitive algorithm (ICA) is introduced for solving the optimal path planning problem for autonomous underwater vehicles (AUVs) operating in turbulent, cluttered, and uncertain environments. ICA is a new sociopolitically inspired global search metaheuristic based on a form of competition between “imperialist” forces and opposing colonies. In this study, ICA is applied to optimize the coordinates of a set of control points for generating a curved spline path. The ICA-based path planner is tested to find an optimal trajectory for an AUV navigating through a variable ocean environment in the presence of an irregularly shaped underwater terrain. The genetic algorithm (GA) and quantum-behaved particle swarm optimization (QPSO) are described and evaluated with the ICA for the path optimization problem. Simulation results show that the proposed ICA approach is able to obtain a more optimized trajectory than the GA- or QPSO-based methods. Monte Carlo simulations demonstrate the robustness and superiority of the proposed ICA scheme compared with the GA and QPSO schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.