Abstract

The general theory of elastic stability is extended to include the imperfection-sensitivity of twofold compound branching points with symmetry of the potential function in one of the critical modes (semi-symmetric points of bifurcation). Three very different forms of imperfection-sensitivity can result, so a subclassification into monoclinal, anticlinal and homeoclinal semi-symmetric branching is introduced. Relating this bifurcation theory to René Thom’s catastrophe theory, it is found that the anticlinal point of bifurcation generates an elliptic umbilic catastrophe, while the monoclinal and homeoclinal points of bifurcation lead to differing forms of the hyperbolic umbilic catastrophe. Practical structural systems which can exhibit this form of branching include an optimum stiffened plate with free edges loaded longitudinally, and an analysis of this problem is presented leading to a complete description of the imperfection-sensitivity. The paper concludes with some general remarks concerning the nature of the optimization process in design as a generator of symmetries, instabilities and possible compound bifurcations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call