Abstract

The buckling of columns is the classic problem in structural stability. It has been studied by many researchers over a large number of years, and it is well known that the severity of the buckling response can be greatly amplified by initial geometric imperfections in the column shape. The current paper presents and discusses the effects of imperfection shape, orientation and magnitude on the buckling behavior of columns. Analyses are conducted for elastic columns with overall initial imperfections in the form of out-of-straightness and sway displacements, as well as local imperfections that, for instance, model constructional and material defects. Traditionally, the initial imperfections are modeled with the first buckling mode with a size selected according to fabrication tolerances. This approach will not necessarily provide a lower limit to the column pre-buckling stiffness and strength. These assertions are supported by numerical results for imperfection-sensitive columns. The influence of end restraint on column strength is also studied since columns in actual frameworks are connected to other structural members such that their ends are restrained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call