Abstract

Translationally symmetric nanostructures, termed phononic crystals (PnCs), offer control over the propagation of acoustic phonons in the gigahertz (GHz) range for signal-processing applications and thermal management at sub-Kelvin temperatures. In this work, we utilize Brillouin light scattering to investigate the impact of symmetry breaking on GHz phonon propagation in PnCs made of holey silicon nanomembranes. We show that the lattice of thimble-like holes leads to broken mid-plane symmetry and, hence, to anticrossing acoustic band gaps. With the rising level of uncorrelated translational disorder, the phononic effects are gradually suppressed, starting at higher frequencies. Strikingly, the low-frequency partial Bragg bandgap remains robust up to the highest level of disorder.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call