Abstract

The optics of the eye cause different wavelengths of light to be differentially focused at the retina. This phenomenon is due to longitudinal chromatic aberration, a wavelength-dependent change in refractive power. Retinal image quality may consequently vary for the different classes of cone photoreceptors, cells tuned to absorb bands of different wavelengths. For instance, it has been assumed that when the eye is focused for mid-spectral wavelengths near the peak sensitivities of long- (L) and middle- (M) wavelength-sensitive cones, short-wavelength (bluish) light is so blurred that it cannot contribute to and may even impair spatial vision. These optical effects have been proposed to explain the function of the macular pigment, which selectively absorbs short-wavelength light, and the sparsity of short-wavelength-sensitive (S) cones. However, such explanations have ignored the effect of monochromatic wave aberrations present in real eyes. Here we show that, when these effects are taken into account, short wavelengths are not as blurred as previously thought, that the potential image quality for S cones is comparable to that for L and M cones, and that macular pigment has no significant function in improving the retinal image.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.