Abstract

A natural biological system under human interventions may exhibit complex dynamical behaviors which could lead to either the collapse or stabilization of the system. The bifurcation theory plays an important role in understanding this evolution process by modeling and analyzing the biological system. In this paper, we examine two types of biological models that Fred Brauer made pioneer contributions: predator-prey models with stocking/harvesting and epidemic models with importation/isolation. First we consider the predator-prey model with Holling type II functional response whose dynamics and bifurcations are well-understood. By considering human interventions such as constant harvesting or stocking of predators, we show that the system under human interventions undergoes imperfect bifurcation and Bogdanov-Takens bifurcation, which induces much richer dynamical behaviors such as the existence of limit cycles or homoclinic loops. Then we consider an epidemic model with constant importation/isolation of infective individuals and observe similar imperfect and Bogdanov-Takens bifurcations when the constant importation/isolation rate varies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call