Abstract

Monolayer (1L) transition metal dichalcogenides (TMDs) are two-dimensional direct-bandgap semiconductors with promising applications of quantum light emitters. Recent studies have shown that intrinsically low quantum yields (QYs) of 1L-TMDs can be greatly improved by chemical treatments. However, nonradiative exciton–exciton annihilation (EEA) appears to significantly limit light emission of 1L-TMDs at a nominal density of photoexcited excitons due to strong Coulomb interaction. Here we show that the EEA rate constant (γ) can be reduced by laser irradiation treatment in mechanically exfoliated monolayer tungsten disulfide (1L-WS2), causing significantly improved light emission at the saturating optical pumping level. Time-resolved photoluminescence (PL) measurements showed that γ reduced from 0.66 ± 0.15 cm2/s to 0.20 ± 0.05 cm2/s simply using our laser irradiation. The laser-irradiated region exhibited lower PL response at low excitation levels, however at the high excitation level displayed 3× higher PL...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call