Abstract

Graphene oxide (GO) modified graphite electrodes were developed for sensitive and selective impedimetric detection of miRNA-34a which is the biomarker of Alzheimer’s disease and various types of cancer. For this purpose, pencil graphite electrodes (PGEs) were used as recognition platform. First, chemical activation of the surfaces of PGEs was done using covalent agents (CA), then GO modification was performed at the surface of chemically activated disposable PGEs. The results of microscopic and electrochemical characterization of GO-CA-PGEs were represented. The step-by-step hybridization process was implemented for impedimetric detection of miRNA-34a and the experimental conditions were optimized for each modification/ immobilization step. Under the optimum conditions, the detection limits for miRNA-34a target were estimated as 1.84 μg/mL (261.7 nM) in PBS (pH 7.4) and 0.5 μg/mL (72.5 nM) in diluted FBS:PBS (1:1). The selectivity of GO based impedimetric biosensor was tested against to other miRNAs; miRNA-15a, miRNA-155 and miRNA-660.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.