Abstract

Impedance study was carried out for the interfaces between lithium, polyaniline (PAn), lithium-doped MnO 2 and modified poly(ethylene oxide) (PEO) electrolyte under various conditions. The interfacial charge-transfer resistance R ct on PEO/PAn, R ct on PEO/LiMn 2O 4 increase with depth-of-discharge and decrease after the charge of the cell containing modified PEO as electrolyte. The charge-transfer resistance R ct on PEO/PAn is higher than R ct on PEO/LiMn 2O 4 under the same condition, since inserted species and mechanism are different for both cases. In the case of PAn, an additional charge-transfer resistance might be related to the electronic conductivity change in discharge/charge potential range, as it was evident from a voltammetry curve. With increasing cycle numbers, the charge-transfer resistance increases gradually. The impedance results also have shown that at low frequency the diffusion control is dominant in the process of the charge and discharge of Li/PEO/PAn or Li/PEO/LiMn 2O 4 cell. The diffusion coefficients have been calculated from impedance data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.