Abstract

The electrical and mechanical properties of conducting polymer poly(3,4-ethylenedioxythiophene) coatings on microfabricated neural probes have been evaluated by electrochemical impedance spectroscopy and nanoindentation techniques. Our results reveal that for poly(3,4-ethylenedioxythiophene) coatings, the minimum impedance correlates well with the mechanical properties. The lowest impedance films are also those that are the softest. This is consistent with microstructural observations by atomic force microscopy and scanning electron microscopy showing an increase in the effective surface area (“fuzziness”) of the coatings. The presence of these conducting polymer coatings provides an intermediate step along the interface between the devices and brain tissue. This information provides clues for the design of strategies for improving the long-term performance of these electrodes in vivo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call