Abstract

We report bioceramic composites of varying concentrations of Ba0.5Sr0.5TiO3 (BST) and Ca10(PO4)6(OH)2 (HAP) for the analysis of electrical properties. The motivation is to predict the suitability of the composites for bio-electrets or the practical possibility in designing electro-active scaffolds. X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM) are used to analyze the microstructural evolution of the composites. A systematic variation in the grain and crystallite sizes is noticed from the FESEM and XRD, along with the presence of Sr5(PO4)3(OH) (SAP). The temperature and frequency variations of the dielectric properties of the composites are studied. Modeling of the dielectric properties with the microstructural properties and at. % of the monolith BST is presented. Cole-Cole formalism is adopted to model the electrical behavior of the synthesized composites. Furthermore, the ac conductivity analysis reveals that Mott's variable range hopping (VRH) conduction is the most appropriate formalism that successfully describes the conduction process. The established Mott's VRH is also related to the polarization mechanisms active in the specimens. Our study projects a correlation between the electrical and biological properties by predicting the protein adsorption behavior from the perspective of impedance spectroscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.