Abstract
An end-to-end (two-point) electrical measurement technique is traditionally employed in evaluating the bulk resistivity of hardened cementitious materials. This testing methodology is critically evaluated by studying the electrical impedance of an engineered cementitious composite (ECC), using cuboidal specimens with four different dimensions viz. 50 mm, 70 mm, 100 mm and 150 mm. In the present work, the impedance response (in the form of Nyquist plots) of the ECC specimens was measured over the frequency range 1 Hz–10 MHz via two external plate-electrodes placed at opposite faces of each specimen. A conductive gel, or saturated, synthetic sponges inserted between the plate/specimen interface were used as the electrode-specimen contacting medium. It is shown that the sponge contacting medium introduced a spurious response which was detectable across the entire frequency range and was particularly evident in specimens with smaller electrode contact area and in specimens with air-voids present on the contact surface. This effect was considerably reduced when either the conductive gel or sponges saturated with highly-conductive liquid was used. It is also shown that the true bulk resistivity of the material, identified from the Nyquist plot, can be evaluated by subtracting the resistivity of the sponge itself from the bulk resistivity of the ECC with the sponges present. Benchmarking studies were also undertaken on specimens with an embedded electrode arrangement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.