Abstract

Internet of Things (IoT), a new direction in information and communication systems, has a significant impact on the development of novel electronics devices. Further progress in the field of IoT devices is conditioned by the development of sensor devices, and in particular, analog front-ends and signal converters for IoT sensors. High sensitivity and wide range applications of IoT sensors can be achieved by methods of impedance spectroscopy. Compared with other methods of physical research, impedance spectroscopy and based on it IoT sensor devices provide ease of implementation, high energy efficiency, good resolution and selectivity. In this paper, we present results of the development and model study of the impedance measuring transducer using the four-phase signal integration method. The implementation of impedance spectroscopy assumes a transition from frequency plots to plots on the complex plane, called as Nyquist plots. The data obtained in this paper are based on the SPICE (Simulation Program with Integrated Circuit Emphasis) model studding methodology, which compares small signal Alternative Current Analysis with large signal Transient Analysis. During the Alternative Current Analysis, Nyquist impedance plot are obtained in the idealized case, and during the Transient Analysis the active ReZ value and reactive ImZ impedance components are calculated for the actual parameters of the measuring transducers and the form of the activating signals. We have proposed a new solution of the impedance measuring transducer based on the four-phase signal commutation and integration method. This method consists in the formation of four informative signals, namely, the voltages $V_{Q1}$, $V_{Q2}$, $V_{Q3}$ та $V_{Q4}$, each of which corresponds to the integration results in the corresponding four phases of the activation signal. In these phases, or time t, the sign functions $A_{Q1}(t)$, $A_{Q2}(t)$, $A_{Q3}(t)$, $A_{Q4}(t)$ of synchronous detections are used: $A_{Q1}(t)=1$ at $t=[0...\pi/2]$; $A_{Q2}(t)=1$ at $t=[\pi/2...\pi]$; $A_{Q3}(t)=1$ at $t=[\pi...3\pi/2]$; $A_{Q4}(t)=1$ at $t=[3\pi/2...2\pi]$. In other time these sign functions are equal 0. Output signals of the impedance measuring transducer, namely, voltages of active $V_{RE}$ and the reactive $V_{IM}$ components are formed by adding and subtracting the numerical values of the above four voltages: $V_{RE}=V_{Q1}+V_{Q2}-V_{Q3}-V_{Q4}$; $V_{IM}=V_{Q1}-V_{Q2}-V_{Q3}+V_{Q4}$. The main units of the impedance measuring analog front-end are a synchronous quadrature detector and an integrator or filter. In comparison to traditional two-phase detection, four-phase detection we have proposed allows avoiding intermediate signal transducing, which provides a significant simplification of impedance measuring transducing. This simplification is achieved by directly integrating the instantaneous value of the $I_{Z}(t)$ current. Important dependences of the measuring transducer output voltages with four-phase integration on the operational amplifiers bandwidth are obtained. Results presented in the article are important for developing a new generation of microelectronic IoT sensor devices based on impedance spectroscopy methods. Main areas of application of such sensor devices are materials science, biochemistry, instrumentation, avionics, ecology, etc.

Highlights

  • Суттєвий вплив на розвиток сучасної мiкросхемотехнiки має новий напрям розвитку iнфокомунiкацiйних систем — Iнтернет Речей (IoT, Internet of Things) [1]

  • Параметричний аналiз вимiрювальних перетворювачiв iмпедансу будемо проводити за величиною спотворення дiаграм Найквiста, використовуючи методи SPICE моделювання [13]

  • Кiлькiснi характеристики такого розходження при чотиритактному iнтегруваннi оцiнюють наведеними на рис. 12 залежностями VRE та VIM вiд ширини смуги пропускання операцiйних пiдсилювачiв GBW

Read more

Summary

Принцип чотиритактного iнтегрування сигналу

На вiдмiну вiд вище розглянутого двотактного детектування, чотиритактне детектування дозволяє уникнути промiжних перетворювачiв сигналу, що забезпечує суттєве спрощення схеми вимiрювальних перетворювачiв. Таке спрощення досягається безпосереднiм iнтегруванням миттєвого значення IZ(t) струму без використання квадратурного детектора. Суть принципу чотиритактного iнтегрування сигналу полягає у формуваннi чотирьох iнформативних сигналiв, зокрема напруг VQ1, VQ2, VQ3 та VQ4 Знаковi функцiї AQ1(t), AQ2(t), AQ3(t), AQ4(t), що визначають цi сигнали, приймають значення 1 в iнтервалах часу: AQ1(t) = 1 при t = [0...π/2]; AQ2(t) = 1 при t = [π/2...π]; AQ3(t) = 1 при t = [π...3π/2]; AQ4(t) = 1 при t = [3π/2...2π]. Iнформативнi сигнали, зокрема, напруги активної VRE та реактивної VIM складових формують. Є очевидним, що при необхiдностi, зокрема при високих вимогах щодо швидкодiї сигнального перетворення чотиритактне iнтегрування можна проводити чотирма схемами з паралельним iнтегруванням На вiдмiну вiд схеми з послiдовним iнтегруванням, схема з паралельним iнтегруванням дозволяє формувати сигнали з вищою завадостiйкiстю чи вищою чутливiстю до малих сигналiв. 4. Схема та керуючi сигнали вимiрювального перетворення з чотиритактним паралельним iнтегруванням

Модельнi дослiдження перетворювача з чотиритактним iнтегруванням сигналу
Схема перетворювача мiстить:
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.