Abstract

An effective quadrature mirror filter (QMF) proposed by Vaidyanathan has been used to solve 2D scattering problems. QMF has been popular for some time in digital signal processing, under the names of multirate sampling, wavelets, etc. In this work, the impulse response coefficients of QMF were used to construct the wavelet transform matrix. Using the matrix to transform the impedance matrices of 2D scatterers produces highly sparse moment matrices that can be solved efficiently. Such a presentation provides better sparsity than the celebrated and widely used Daubechies wavelets. These QMF coefficients are dependent on the filter parameters such as transition bandwidth and filter length. It was found that the sharper the transition bandwidth, the greater the reduction in nonzero elements of the impedance matrix. It also can be applied in the wavelet packet algorithm to further sparsify the impedance matrix. Numerical examples are given to demonstrate the effectiveness and validity of our finding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.