Abstract

In this research, the possibility of passive damping system based on the piezoelectric energy harvesting has been proposed and tested. To apply passive damper system, piezoelectric ceramics were stacked, and impedance was matched. Piezoelectric energy harvesters were employed due to their excellent piezoelectric and robust properties. Especially, multilayered (Pb,Zr)TiO3 piezoelectric ceramic have high piezoelectric charge coefficient d33 and piezoelectric voltage coefficient g33 for actuator and harvester applications, respectively. Multilayered (Pb,Zr)TiO3 piezoelectric ceramics can generate comparatively high current level compared with single layered piezoelectric ceramics due to its parallel connected capacitors. In energy harvester applications, multilayered (Pb,Zr)TiO3 piezoelectric ceramics have a role of voltage source with capacitive impedance. Due to considerable impedance in voltage sources, the role of impedance matching between the source and output terminal is more critical. By employing the piezoelectric energy harvesting system for the passive damper, output energy of 11 μJ/cm3 was obtained at the 100 μF capacitors. Therefore, impedance matching technologies were intensively investigated to obtain maximum output energy for storing capacitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.