Abstract
This paper presents a hybrid adaptive control strategy for upper limb rehabilitation robots using impedance learning. The hybrid adaptation consists of a differential updating mechanism for the estimation of robotic modeling uncertainties and periodic adaptations for the online learning of time-varying impedance. The proposed hybrid adaptive controller guarantees asymptotical control stability and achieves variable impedance regulation for robots without interaction force measurements. According to Lyapunov’s theory, we proved that the proposed impedance learning controller guarantees the convergence of tracking errors and ensures the boundedness of the estimation errors of robotic uncertainties and impedance profiles. Simulations and experiments conducted on a parallel robot validated the effectiveness and the superiority of the proposed impedance learning controller in robot-assisted rehabilitation. The proposed hybrid adaptive control has potential applications in rehabilitation, exoskeletons, and some other repetitive interactive tasks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.