Abstract

In this paper, a novel hybrid optimal Adaptive High-Order Super Twisting Sliding Mode (AHOSTWSM) impedance control is proposed for a lower limb exoskeleton robot with 7 active joints, which takes the interaction forces between the robot and the user into account. First, the dynamic model of the robot is extracted using Lagrange approach. Then, an adaptive super twisting sliding mode controller is designed based on Lyapanov theory. Moreover, the interaction forces are obtained in every time-step and applied to the robot as a compensating torque to guard against disturbances. The desired trajectory of the upper limb joint has been extracted so that the stability of the robot is achieved based on Zero Moment Point (ZMP) criterion at any moment. Moreover, to achieve optimal performance (maximum stability, minimum tracking error, reduced interacting forces, and optimal energy consumption), parameters of the proposed controller, the upper limb desired trajectory, and the impedance system are optimized using Harmony Search Algorithm (HSA). Finally, in order to demonstrate the effectiveness of the proposed controller, optimal sliding mode controller (SMC) is designed and performance of the AHOSTWSM is compared with SMC. The simulation results reveal the superiority of the controller in comparison with SMC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call