Abstract

Polishing robot is an automatic system in which the robot controls the end effector to fix the polishing tool and finish the workpiece polishing efficiently. In order to solve the problem of how to maintain the stability of actuator contact force in the robot automatic polishing system, a learning algorithm of robot impedance control parameters based on reinforcement learning is proposed and the impedance control model is established in this paper. The influence parameters (inertia M, damping B, stiffness K) of impedance performance are analyzed by numerical simulation method and the optimized impedance parameters are obtained at last. Due to the small number of iterations and high data utilization rate, reinforcement learning algorithm is more suitable for robot constant force tracking. In the process of applying reinforcement learning algorithm, a combination of dynamic matching method and linearization method is proposed to predict the output distribution of the state, which greatly improves the cost function of the evaluation strategy, and impedance parameters corresponding to the optimal strategy are obtained. Finally, steam turbine blade is taken as polishing test part. The average roughness of the selected points of test part after polishing is only 0.302μm, and much less than 1.151μm before polishing, which verifies the feasibility of the proposed impedance control method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.