Abstract

An impedance boundary method of moments (IBMOM) is proposed to accurately and efficiently compute the propagation characteristics including the number of guided modes of general graded-index dielectric slab waveguide structures. The method is based on Galerkin's procedure in the method of moments and employs the exact impedance boundary condition at the interfaces between the graded-index region and constant-index cladding. Legendre polynomials are utilized in the field expansion. Computational results are shown for waveguides with various inhomogeneous refractive index profiles. The results indicate that typically five Legendre polynomials are sufficient for accurate solutions of the dominant TE and TM modes in optical waveguides having a finite region of inhomogeneous refractive index. Diffused optical waveguides with untruncated index profiles as well as coupled dielectric waveguides can be accurately analyzed using ten Legendre polynomials. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.