Abstract

Polycrystalline [Formula: see text][Formula: see text][Formula: see text]([Formula: see text][Formula: see text]O3 is prepared by the solid-state reaction technique. The formation of single-phase material was confirmed by an X-ray diffraction study and it was found to be a tetragonal phase at room temperature. Nyquist plots ([Formula: see text] versus [Formula: see text] show that the conductivity behavior is accurately represented by an equivalent circuit model which consists of a parallel combination of bulk resistance and constant phase elements (CPE). The frequency dependence of the conductivity is interpreted in terms of Jonscher’s law. The conductivity [Formula: see text] follows the Arrhenius relation. The modulus plots can be characterized by the empirical Kohlrausch–Williams–Watts (KWW), [Formula: see text] = exp([Formula: see text]/[Formula: see text] function and the value of the stretched exponent ([Formula: see text] is found to be almost independent of temperature. The near value of activation energies obtained from the analyses of modulus and conductivity data confirms that the transport is through an ion hopping mechanism dominated by the motion of the ([Formula: see text] ions in the structure of the investigated material.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.