Abstract

Impedance and dielectric spectra of silicone elastomer nanocomposites were used to study their secondary (α* or β) relaxation behavior as a function of nano-graphite loadings in the frequency range of 10−1 to 106 Hz. The effect of nano-graphite loadings on real and imaginary parts of complex impedance has been distinctly visible and explained on the basis of interfacial polarization of filler and relaxation dynamics of polymer chains. The effects of nano-graphite loadings on loss tangent, dielectric permittivity, complex dielectric modulus and electrical conductivity have also been studied. The dielectric permittivity of the composites strongly depends up on the extent of nano-graphite concentration and temperature. The conductivity and relaxation phenomenon have been investigated through dielectric modulus formalism. Nyquist plots, Cole-Cole plots and Argand diagram confirm the existence of non-debye relationship. The frequency dependence of ac conductivity has been investigated by using Percolation theory. The percolation phenomenon has been discussed from electrical conductivity and dielectric permittivity and percolation threshold was found at 6 phr nano-graphite loading. SEM photomicrographs shows well dispersion of nano-graphite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.