Abstract

Increasing impedance during freezing might be a valuable marker for guiding cardiac cryo-ablation. We provide model based insights on how decreasing temperature below the freezing point of tissue relates to the percentage of frozen water. Furthermore, we provide experimental data for comparing this percentage with the increase in impedance.Measurements were performed on a bovine tissue sample at frequencies between 5 and 80 kHz. Slow cooling and heating rates were applied to minimize temperature gradients in the myocardial sample and to allow accurate assessment of the freezing point. Computer simulation was applied to link impedance with temperature dependent conductivities. The osmotic virial equation was used to estimate the percentage of frozen water.Measurements identified the freezing point at −0.6 ∘C. At −5 ∘C, impedance rose by more than a factor of ten compared to that at the freezing point and the percentage of frozen water was estimated as being 89%. At −49 ∘C impedance had increased by up to three orders of magnitude and ice formation was most pronounced in the extracellular space.Progressive ice formation in tissue is reflected by a large increase in impedance, and impedance increases monotonically with the percentage of frozen water. Its analysis allows for experimental assessment of factors relevant to cell death. Solid ice contributes to the rupture of the micro-vasculature, while phase shifts reflect concentration differences between extra- and intracellular space driving osmotic water transfer across cell membranes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.