Abstract

AbstractDespite widespread use of radio-echo sounding (RES) in glaciology and broad distribution of processed radar products, the glaciological community has no standard software for processing impulse RES data. Dependable, fast and collection-system/platform-independent processing flows could facilitate comparison between datasets and allow full utilization of large impulse RES data archives and new data. Here, we present ImpDAR, an open-source, cross-platform, impulse radar processor and interpreter, written primarily in Python. The utility of this software lies in its collection of established tools into a single, open-source framework. ImpDAR aims to provide a versatile standard that is accessible to radar-processing novices and useful to specialists. It can read data from common commercial ground-penetrating radars (GPRs) and some custom-built RES systems. It performs all the standard processing steps, including bandpass and horizontal filtering, time correction for antenna spacing, geolocation and migration. After processing data, ImpDAR's interpreter includes several plotting functions, digitization of reflecting horizons, calculation of reflector strength and export of interpreted layers. We demonstrate these capabilities on two datasets: deep (~3000 m depth) data collected with a custom (3 MHz) system in northeast Greenland and shallow (<100 m depth, 500 MHz) data collected with a commercial GPR on South Cascade Glacier in Washington.

Highlights

  • The first radio-echo sounding (RES) systems used to image ice were fully analog, recording output on film with little or no post-processing (Waite, 1959)

  • The bed return is clearly visible at 2500–2800 m depth throughout the profile, and internal layers can be seen at most depths except in the shear margins where steep layer slopes cause a lack of returns (Holschuh and others, 2014)

  • The equilibrium line is located at ∼0.375 km, but surprisingly, the profile shows accumulation below this elevation and ablation above; previous summer surfaces ascend toward this point from the left, and the lack of discernable structure below this surface to the right is indicative of temperate ice

Read more

Summary

Introduction

The first radio-echo sounding (RES) systems used to image ice were fully analog, recording output on film with little or no post-processing (Waite, 1959). Vast quantities of RES data are routinely collected over the ice sheets and over glaciers, and all are stored in digital form, permitting post-processing to enhance signal-to-noise ratio, geolocation or readability, and allowing easy extraction of quantitative geometric and radiometric information from the radar returns. Many of these data are collected using airborne chirped or frequency modulated continuous waveform radar systems, which require a different processing flow than that for impulse radars and are usually distributed as fully processed and interpreted products (Paden and others, 2018). Due to the recent proliferation of airborne drone technology and commercial impulse radars designed to be deployed on these drones (e.g. RadarTeam Cobra), collection of airborne impulse radar data by individual groups is becoming more common, which requires processing by those users

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call