Abstract

The aim of this study was to assess gait initiation (GI) performance longitudinally across clinical concussion recovery milestones through return to participation (RTP). We recruited 54 collegiate student-athletes, 27 with concussions and 27 matched controls (15 female and 12 male per group). Participants performed five trials of GI at baseline and again at five post-concussion clinical milestones: 1) Acute, the day clinical tests achieved baseline values on the 2) Balance Error Scoring System (BESS), 3) Immediate Post-Concussion Assessment and Cognitive Test ImPACT, 4) Asymptomatic, and 5) RTP Day. GI performance on six outcome measures (anterior/posterior and medial/lateral center of pressure displacements and velocities during the anticipatory postural adjustment [APA] phase and initial step length and velocity) with repeated-measures mixed model and pair-wise post hoc. A reliable change index (RCI) was calculated, and post-concussion participant's performance was compared to the RCI at milestones. There were significant interactions for APA posterior and lateral displacement, APA posterior velocity, step length, and step velocity. The post-hoc tests identified significant deficits across clinical milestones and at RTP for APA posterior and lateral displacement, step length, and step velocity. There were no post-hoc differences for any outcome measure in the control group. At RTP, 85.2-88.9% of concussion participants had at least one outcome measure which exceeded the 80% or 95% RCI. The primary finding of this study was persistent impairments in dynamic postural control, suggesting ongoing neurophysiological impairment despite clinical recovery. These results suggest that collegiate student-athletes may be RTP before neurophysiological recovery and potentially exposing themselves to elevated risk of recurrent concussion or subsequent musculoskeletal injury.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.