Abstract

We analyzed changes in the activity of individually identifiable neurons involved in the networks underlying feeding and withdrawal behaviors in snails before, during, and after aversive learning in vitro. Responses to food in the “reinforcing” serotonergic neurons involved in withdrawal changed significantly after training, implying that these serotonergic cells participate in the reactivation of memory and are involved in the reconsolidation process. In behavioral experiments it was shown that impairment of the functioning of the serotonergic system with the selective neurotoxin 5,7-DiHT did not change the memory, when tested once, but resulted in a complete extinction of the contextual memory after repeated reactivation of memory. Conversely, the cued memory to a specific type of food was significantly reduced but still present. Thus, we conclude that it is only for the context memory, that participation of the “reinforcing” serotonergic neurons in memory retrieval may be the gate condition for the choice between extinction/reconsolidation.

Highlights

  • We analyzed changes in the activity of individually identifiable neurons involved in the networks underlying feeding and withdrawal behaviors in snails before, during, and after aversive learning in vitro

  • One of the most interesting properties of memory is that a stable consolidated memory can be disturbed by the same factors that can impair newly formed memories shortly after acquisition, if applied along with the “reminder” cues representing a part of the learning situation[1,2,3,4]

  • We chose to record from the metacerebral giant serotonergic neurons (MtC1, left or right) that are known to participate in feeding behavior (FB – feeding behavior, middle trace on Fig. 1C) and to receive information about all kinds of chemical stimulation in order to monitor the conditioned stimulus and the reinforcement perception in each preparation

Read more

Summary

Introduction

We analyzed changes in the activity of individually identifiable neurons involved in the networks underlying feeding and withdrawal behaviors in snails before, during, and after aversive learning in vitro. Responses to food in the “reinforcing” serotonergic neurons involved in withdrawal changed significantly after training, implying that these serotonergic cells participate in the reactivation of memory and are involved in the reconsolidation process. Several reports have shown that after the presentation of a specific reminder, reactivated old memories become labile and again susceptible to amnesic agents. This vulnerability diminishes with the progress of time and implies a re-stabilization phase, usually referred to as reconsolidation[3,6]. One of the approaches that may be employed for the investigation into the role of 5-HT in behavioral plasticity is selective impairment of the serotonergic neurons with neurotoxins. The neurotoxin is oxidized intracellularly, producing free radicals which elicit a significant decrease in 5-HT production starting from the 3rd day[30], and ablation of serotonergic terminals both www.nature.com/scientificreports/

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.